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Abstract 

The synthesis of processable core crosslinked star (CCS) polymers via iniferter and 

RAFT mediated radical polymerisation has been investigated for their potential 

application in the field of molecular recognition.  Molecular imprinted CCS polymers 

have potential as delivery systems in solution and, by virtue of its improved 

processability, may be used to produce thin films with recognition capability for 

sensing applications.  

 

Synthesis of CCS polymers, consist of poly(ethylene glycol dimethacrylate) core and 

polystyrene (PS) arms, via the arm-first method proved to be more straightforward 

than the core-first method. The length of the PS arm could be controlled by varying the 

ratio of styrene monomer to the iniferter or RAFT agent and polymerisation time. 

Although lower polydispersity (PDI) of PS arms were produced via RAFT (PDI values 

between 1.2 – 1.6) compared to those of the iniferter (PDI values between 1.8 – 12.2), 

synthesis of arm-first CCS polymers via iniferter was more successful than RAFT. 

Synthesis of CCS polymers via the core-first method was deemed more suitable for the 

preparation of molecular imprinted CCS since the imprinted core can be accessed for a 

more comprehensive characterisation and, unlike the CCS via arm-first, there is no 

contamination from unreacted PS arms. 

 

CCS molecular imprinted polymers (MIPs) were synthesised employing the core-first 

method. The molecular imprinted microspheric cores were prepared using methacrylic 

acid as functional monomer and ethylene glycol dimethacrylate as crosslinker at 

various concentrations of iniferter/RAFT (i.e. 5, 10 and 20 mol % with respect to the 

total monomer) in the presence of benzylpiperazine (BZP) as template. The large 

difference in size between the MIPs and their NIP counterparts, which translated to a 

large difference in the specific surface areas of the microspheres, has implications on 

the assessment of binding efficiency generally normalised against NIPs with respect to 

mass. Therefore, the binding efficiency of the MIPs was also expressed with respect to 

specific surface area. Among the formulations, MIP microspheres prepared with 5% 

BDDC and MCEBTTC exhibited the best binding performance in their respective series, 
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with BDDC MIP cores exhibiting higher binding capacity and greater specific binding 

compared to the RAFT MIPs. Further investigation revealed that the 5%BDDC MIP 

exhibited higher maximum number of binding sites (N) and greater high affinity 

binding sites (about 90% and 2.5-fold higher, respectively) as well as stronger affinity 

towards the BZP template (lower Kd value) compared to those of the 5%RAFT MIP. 

 

Selectivity studies were carried out on the 5%BDDC MIP against 1-phenylpiperazine 

(PHP) and (1R,2S)-(-)-ephedrine (EPH) having closely related structures to that of BZP.  

The MIP exhibited better selectivity towards BZP over PHP but better selectivity 

towards EPH over BZP in the non-competitive binding environment. In the competitive 

binding environments, the MIP exhibited better selectivity towards BZP over PHP but 

showed equivalent selectivity towards both BZP and EPH, which was attributed to the 

smaller size and stronger hydrogen bonding ability of EPH compared to BZP.  

 

Several fractions of CCS MIPs, which differ in their degree of dispersibility in THF, were 

obtained when polystyrene (PS) arms were grafted to 5%BDDC MIP. Our results show 

that dispersibility improved with increasing arm length, although it did not necessarily 

contribute to better binding performance. The presence of PS arms around the 

imprinted core resulted in a decrease in binding capacity of the CCS MIPs compared to 

the core precursor in acetonitrile, a bad solvent for the arm. Similar results are 

obtained in THF, a good solvent for the PS arm. However, contrary to the binding 

results in acetonitrile where binding capacity seemed to decrease with increasing arm 

length, greater binding capacity was exhibited by the CCS MIPs with longer arms than 

those with shorter arms in THF. In this study, we have demonstrated that 

processability of MIP microspheres can be readily introduced by attaching linear 

polymeric arms. However, it was difficult to obtain comprehensive binding assessment 

using the conventional comparison of the MIP with the NIP due to the presence of 

difference number and/or arm length around the CCS polymers.  
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